Webpage Excerpt: Vitamin D=longer telomeres, slower aging

As a measure of systemic telomere length, generally, peripheral blood leukocyte telomere length is preferred. Systemic telomere length has been proposed as a marker of biological aging. A subject's systemic telomere length is predominantly genetically determined, but has several other known determinants: age (shorter telomeres in older people), paternal age at birth (longer telomeres in subjects with older fathers at their birth) and sex (shorter telomeres in men, probably due to a faster telomere attrition). Evidence suggests that elevated levels of oxidative stress and inflammation further increase the telomere attrition rate.[14]

Vitamin D may have an effect on peripheral blood leukocyte telomere length. Richards and coworkers examined whether vitamin D concentrations would slow the rate of shortening of leukocyte telomeres. The authors stated that vitamin D is a potent inhibitor of the proinflammatory response and slows the turnover of leukocytes. Leukocyte telomere length (LTL) predicts the development of aging-related disease, and length of these telomeres decreases with each cell division and with increased inflammation. Researchers measured serum vitamin D concentrations in 2160 women aged 18–79 years (mean age: 49.4) from a large population-based cohort of twins. This study divided the group into thirds based on vitamin D levels, and found that increased age was significantly associated with shorter LTL (r = -0.40, P < 0.0001). Higher serum vitamin D concentrations were significantly associated with longer LTL (r = 0.07, P = 0.0010), and this finding persisted even after adjustment for age (r = 0.09, P < 0.0001) and other variables that independently could affect LTL (age, season of vitamin D measurement, menopausal status, use of hormone replacement therapy, and physical activity). The difference in LTL between the highest and lowest tertiles of vitamin D was highly significant (P = 0.0009), and the authors stated that this was equivalent to 5.0 years of aging. The authors concluded that higher vitamin D levels, (easily modifiable through nutritional supplementation), were associated with longer LTL, which underscores the potentially beneficial effects of vitamin D on aging and age-related diseases.


No comments:

Post a Comment


telomerase, cancer, tissue regeneration, prostate cancer, prostate cancer cure, breast cancer, cancer car donation, telomerase, proton beam therapy, stem cell, aging, geron, mesothelioma